DOI: 10.1002/ejic.200500639

Copper(I) Complexes with a Cu₄S₆- and CuS₄-Type Core Obtained from the Reaction of Copper(0) with HN(SPPh₂)₂·I₂

M. Carla Aragoni, [a] Massimiliano Arca, [a] M. Bonaria Carrea, [a] Francesco Demartin, [b] Francesco A. Devillanova, [a] Alessandra Garau, [a] Michael B. Hursthouse, [c] Susanne L. Huth, [c] Francesco Isaia, *[a] Vito Lippolis, [a] Helen R. Ogilvie, [c] and Gaetano Verani [a]

Keywords: Cluster compounds / Copper / Coordination chemistry / Phosphanes / S ligands

The copper(I) compounds $[Cu^I_4(L)_3]I_3$ (1) and $[Cu^I(HL)_2]I_3\cdot CH_3CN$ (2) $[HL=HN(SPPh_2)_2]$ have been obtained from the reaction of the adduct $HL\cdot I_2$ with copper(0) powder in diethyl ether solution. Compound 1 contains a tetrahedron of Cu atoms with three anionic L ligands coordinated to the coppers through the sulfur atoms to build a Cu_4S_6 core. The mean Cu-Cu and Cu-S bond lengths related to the Cu_4S_6 core in copper-loaded transcription factors CuAce1 and Cu-Mac1, and in the model compound $[Cu_4(SPh)_6]^{2-}$, have been compared with those of the $[Cu_4(L)_3]^+$ cation, and the geometric volumes of the Cu_4 cores have been evaluated. The results suggest that the cation $[Cu_4(L)_3]^+$ is a possible structural model compound for the metal site in Ace1 and Mac1 transcription factors. In compound 2, two neutral HL ligands bind a Cu^I ion in an S_1S' -isobidentate chelating fashion to

form a slightly distorted tetrahedral CuS_4 core. The ^{31}P NMR spectroscopic data of compound $\mathbf{1}$ are consistent with the maintenance of its structure in solution. Moreover, phosphorus variable-temperature measurements indicate a change from a two-spin coupled AB system at 0 °C to an A_2 spin system at 40 °C. The reaction of $[\text{Cu}_4(\text{L})_3]^+$ with HI, monitored by ^{31}P NMR spectroscopy, leads to the protonation of the complexed ligands at the Cu_4 core and formation of the cation $[\text{Cu}_4(\text{HL})_3]^{4+}$. The protonation reaction is reversible: increasing the amount of organic base 1,8-bis(dimethylamino)naphthalene (DMAN) regenerates the starting cation $[\text{Cu}_4(\text{L})_3]^+$.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

The tetraphenyldithioimidodiphosphanic acid ligand HL, and its deprotonated derivative L, have been extensively used in coordination chemistry^[1] since they feature a flexible SPNPS skeleton along with a large S···S bite that enables the formation of an unstressed six-membered, MSPNPS chelate ring with a great variety of metal ions.^[1] A literature survey reveals that there have been some studies on the reaction of L with Cu^{II} salts, and these have led to the synthesis of complexes [Cu^{I,II}₃L₄], [Cu^I₃L₃], [Cu^I₄L₃][BF₄].^[2b] Furthermore, the ability of L to form a tetrahedral CuS₄ core with the Cu^{II} ion has been used by Bereman et al.^[3] to propose the complex [Cu(L)₂] as a potential model for type-I Cu^{II} sites in metalloenzymes; unfortunately, the complex was not stable for more than a few days at room tempera-

ture, either in the solid state or in solution, due to autoreduction to Cu^I. Recently, Woollins et al. have described three other complexes of general stoichiometry [Cu^I₃D₃] (D = [N(SP*i*Pr₂)₂]⁻, [N(SP*i*Pr₂)(SPPh₂)₂]⁻ and [N{SP(EtO)₂}-{SP(OPh₂)₂]⁻) obtained from the reaction of either Cu^{II} or Cu^I ions with the corresponding anionic ligand D.^[4] The X-ray crystal structures of these complexes revealed that the molecules contain a six-membered Cu^I₃S₃ ring in their core, with each copper atom being tricoordinate in an approximately trigonal geometry resulting from the coordination of one terminal and two bridging S-donors.

The $Cu^I_xS_y$ cores^[5] may be of interest as structural model compounds for the active-sites in copper(I)-containing enzymes and proteins, which are far less known or studied than the copper(II) analogues. For example, the $Cu^I_4S_6$ core is currently generating great interest since two copper-regulated transcription factors central to yeast copper homeostasis, Ace1 and Mac1, in *Saccharomyces cerevisiae*, have revealed the presence of a remarkably similar polycopper cluster in these two proteins.^[6]

In this paper, we have delved into the synthesis of new copper complexes of HL and/or L using the well-tested route based on the iodine adduct of HL, HL·I₂, as oxidising/complexing agent towards metal(0) powders. In fact,

[[]c] School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

 [[]a] Dipartimento di Chimica Inorganica ed Analitica, Università di Cagliari,
 S. S. 554 bivio per Sestu, 09042 Cagliari, Italy

[[]b] Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università di Milano, via G. Venezian 21, 20133 Milano, Italy

this kind of reaction has proved to be an interesting and promising synthetic route, as it has often led to the preparation of complexes with unusual stoichiometries and geometrical features.[7] The reaction between the HL·I2 adduct and copper(0) powder has been investigated, and the X-ray crystal structures of complexes [Cu₄(L)₃]I₃ (1) and [Cu(HL)₂]-I₃·CH₃CN (2) are reported. The Cu^I₄S₆ core in complex 1 has been studied by solid-state ³¹P NMR spectroscopy and solution variable-temperature NMR spectroscopy as well. The results, along with the structural data, suggest that $[Cu_4(L)_3]^+$ is a possible structural model compound for the metal site in Acel and Macl transcription factors. The reactivity of complex 1 to form the cationic complex [Cu^I₄(HL)₃]⁴⁺ has also been evaluated as a dependence on the acid/base behaviour of the metal-complexed ligands L and HL (Scheme 1).

Scheme 1.

Results and Discussion

Syntheses and Crystal Structures of $[Cu^I_4(L)_3]I_3$ (1) and $[Cu^I(HL)_2]I_3$ ·MeCN (2)

The reaction between the adduct HL·I₂ and Cu powder (1:1 molar ratio) was carried out in diethyl ether at room temperature for two days. During this time the dark-red colour of the mixture turned to pale-orange with separation of an orange powder. ³¹P NMR spectroscopic analysis of the solution after two days indicated that the reaction was quantitative since no signal related to HL was detectable. The ³¹P MAS NMR spectrum of the solid remaining after removal of the solvent revealed resonances at $\delta = 52.4$, 32.9, 31.4, 30.4, 28.9 and 26.6 ppm, which are indicative of the presence of metal-complexed ligands both in their protonated, HL, and deprotonated, L, forms. Resonances in two specific ranges of the spectrum, namely $\delta = 60-50$ and 40-20 ppm, can be considered highly diagnostic in identifying the species HL and L, respectively.^[8] Treatment of the crude precipitate with CHCl₃ caused a partial dissolution of the solid; after slow evaporation of the solvent, orange crystals of stoichiometry [CuI₄(L)₃]I₃ (1) were isolated. The remaining crude precipitate was then dissolved in MeCN to produce orange crystals of [Cu^I(HL)₂]I₃·MeCN (2) on slow evaporation of the solvent. From the ³¹P MAS NMR resonances of compounds 1 and 2 it was possible to confirm that both copper complexes are present in the orange powder separated from the ethereal reaction solution. The separation of the two complexes is, therefore, attributable to their markedly different solubility in the solvents employed. The structure of the cation of 1 has been reported before as its CuCl₂ and BF₄ salts; however, it was re-determined, and is briefly reported here, to provide a solid basis for the interpretation of the ³¹P NMR measurements.

Compound 1 consists of discrete $[Cu^{I}_{4}(L)_{3}]^{+}$ cations and I₃⁻ anions separated by normal van der Waals contacts. The molecular structure of the cation $[Cu^{I}_{4}(L)_{3}]^{+}$ is shown in Figure 1, while selected bond parameters are reported in Table 1. The cation consists of a tetrahedron of copper(I) atoms surrounded by three didentate L ligands coordinated to the copper atoms through the sulfur atoms. The arrangement of the ligands around the metal core resembles that found in $[Cu^{I}_{4}(L)_{3}]^{+}[CuCl_{2}]^{-}\cdot CCl_{4}$ (3), [2a] i.e. it conforms to a pseudo-trigonal idealised symmetry, with the threefold symmetry axis passing through the unique Cu(4) and the mid-point of the three remaining copper atoms (Figure 1). One sulfur atom of each ligand binds the Cu(4) atom and one of the three remaining copper atoms [Cu(1), Cu(2) and Cu(3)], while the second sulfur atom binds a couple of copper atoms of the basal plane. Thus, each copper of the basal plane is coordinated by two S atoms of the same ligand and by the sulfur atom of a different ligand. The distances of the unique Cu(4) atom to the remaining copper atoms are, on average, slightly shorter than those found between the other couples of copper atoms (2.787 vs. 2.812 Å). These values compare well with those found in the analogous complex 3 (mean values of 2.777 vs. 2.806 Å), although significant variations in the single copper-copper distances are observed in the two compounds due to local packing effects associated with different counteranions and with the presence of a solvent molecule. In 3, the Cu-S bond lengths involving the unique Cu(4) atoms are not significantly different from each other and range from 2.257 to 2.278 Å. This range is wider in 1 (2.256–2.291 Å), with the larger Cu–S bonds being those with Cu(4). Very small changes are observed in the P-S and P-N bonds of the two compounds,

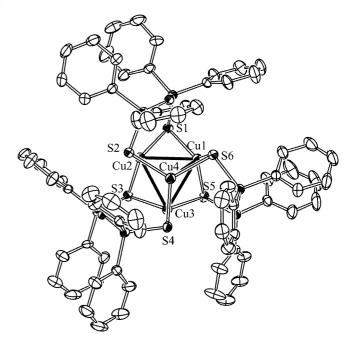


Figure 1. ORTEP drawing of the $[Cu_4(L)_3]^+$ complex cation of 1. Thermal ellipsoids are drawn at 30% probability.

201

FULL PAPER F. Isaia et al.

while a significant increase in the P–N–P angle occurs on passing from 1 to 3 (133.5° and 138.0°, respectively). The triiodide anion is slightly asymmetric and almost linear [174.60(2)°], and no I···I contacts between different anions are observed.

Table 1. Selected interatomic distances [Å] and angles [°] for compound 1.

Cu(1)–Cu(2)	2.7679(8)	Cu(1)-Cu(4)	2.8033(8)
Cu(1)– $Cu(3)$	2.8370(9)	Cu(2)–Cu(4)	2.7994(8)
Cu(2)– $Cu(3)$	2.8306(8)	Cu(3)– $Cu(4)$	2.7578(8)
S(1)–Cu(2)	2.270(1)	S(1)–Cu(1)	2.280(1)
S(2)–Cu(2)	2.261(1)	S(2)-Cu(4)	2.285(1)
S(3)–Cu(3)	2.272(1)	S(3)–Cu(2)	2.283(1)
S(4)-Cu(3)	2.269(1)	S(4)–Cu(4)	2.291(1)
S(5)-Cu(1)	2.256(1)	S(5)–Cu(3)	2.280(1)
S(6)–Cu(1)	2.263(1)	S(6)–Cu(4)	2.291(1)
P(1)-S(1)	2.055(2)	P(2)-S(2)	2.043(2)
P(3)-S(3)	2.056(2)	P(4)-S(4)	2.058(2)
P(5)-S(5)	2.051(2)	P(6)-S(6)	2.052(2)
P(1)-N(1)	1.588(4)	P(2)-N(1)	1.593(4)
P(3)-N(2)	1.585(4)	P(4)-N(2)	1.593(4)
P(5)-N(3)	1.586(4)	P(6)-N(3)	1.585(4)
I(1)–I(2)	2.9436(9)	I(2)-I(3)	2.8911(8)
Cu(2)-Cu(1)-Cu(4)	60.32(2)	Cu(2)– $Cu(1)$ – $Cu(3)$	60.65(2)
Cu(4)-Cu(1)-Cu(3)	58.54(2)	Cu(1)– $Cu(2)$ – $Cu(4)$	60.46(2)
Cu(1)-Cu(2)-Cu(3)	60.88(2)	Cu(4)-Cu(2)-Cu(3)	58.66(2)
Cu(4)-Cu(3)-Cu(2)	60.11(2)	Cu(4)-Cu(3)-Cu(1)	60.12(2)
Cu(2)– $Cu(3)$ – $Cu(1)$	58.47(2)	Cu(3)-Cu(4)-Cu(2)	61.24(2)
Cu(3)-Cu(4)-Cu(1)	61.34(2)	Cu(2)– $Cu(4)$ – $Cu(1)$	59.21(2)
Cu(2)-S(1)-Cu(1)	74.92(4)	Cu(2)-S(2)-Cu(4)	76.00(4)
Cu(3)-S(3)-Cu(2)	76.82(4)	Cu(3)-S(4)-Cu(4)	74.40(4)
Cu(1)-S(5)-Cu(3)	77.40(4)	Cu(1)-S(6)-Cu(4)	75.97(4)
P(1)-N(1)-P(2)	133.5(2)	P(3)-N(2)-P(4)	134.2(2)
P(6)–N(3)–P(5)	132.9(2)	I(1)–I(2)–I(3)	174.60(2)

The molecular structure of $[Cu^{I}(HL)_{2}]I_{3}\cdot MeCN$ (2) is shown in Figure 2 and selected bond lengths and angles are

collected in Table 2. In the complex cation [Cu^I(HL)₂]⁺ the copper is coordinated by two neutral HL ligands in an *S,S'*-isobidentate chelating fashion, resulting in the formation of two six-membered CuS₂P₂N rings; the charge is balanced by a slightly asymmetric I₃⁻ ion. One solvent molecule (MeCN) per formula unit is also present in the structure, giving rise to weak hydrogen bonding with an imido group [N(2)-H(N2)···N(3) = 2.925 Å; N(2)-H···N(3) = 166.63°]. The [Cu^I(HL)₂]⁺ cation contains a slightly distorted tetrahedral CuS₄ core, with S–Cu–S angles ranging from 101.10(8)° to 117.92(8)°. The four Cu–S interatomic distances are slightly different and range from 2.338(2) [Cu(1)–S(3)] to 2.376 Å [Cu(1)–S(2)]. The CuSPNPS metallacycles display a pseudo-boat conformation with a P and an S atom of the ring acting as the stern and bow of the boat,

Table 2. Selected interatomic distances $[\mathring{A}]$ and angles [°] for compound 2.

=			
Cu(1)–S(1)	2.363(2)	Cu(1)–S(2)	2.376(2)
Cu(1)-S(3)	2.338(2)	Cu(1)-S(4)	2.352(2)
P(1)-S(1)	1.962(3)	P(2)-S(2)	1.959(3)
P(3)-S(3)	1.961(3)	P(4)-S(4)	1.963(3)
P(1)-N(1)	1.666(7)	P(2)-N(1)	1.689(6)
P(3)-N(2)	1.670(7)	P(4)-N(2)	1.675(7)
I(1)-I(2)	2.9486(9)	I(2)-I(3)	2.8786(9)
S(1)-Cu(1)-S(2)	112.96(8)	S(3)-Cu(1)-S(4)	112.62(8)
S(2)-Cu(1)-S(4)	101.10(8)	S(1)-Cu(1)-S(4)	117.92(8)
S(1)-Cu(1)-S(3)	101.40(8)	S(2)-Cu(1)-S(3)	111.22(9)
I(1)-I(2)-I(3)	175.52(3)		
P(1)-N(1)-P(2)	127.4(4)	P(3)-N(2)-P(4)	126.9(5)
N(1)-P(1)-C(1)	102.7(3)	N(1)-P(1)-C(7)	109.6(3)
C(1)-P(1)-C(7)	106.5(4)	N(1)-P(1)-S(1)	112.7(3)
C(1)-P(1)-S(1)	113.6(3)	C(7)-P(1)-S(1)	111.2(3)
N(1)-P(2)-S(2)	114.6(2)	N(2)-P(3)-S(3)	113.9(3)
N(2)-P(4)-S(4)	115.0(3)	P(1)-S(1)-Cu(1)	96.45(10)
P(2)-S(2)-Cu(1)	96.60(11)	P(3)-S(3)-Cu(1)	98.98(11)
P(4)–S(4)–Cu(1)	98.01(11)		

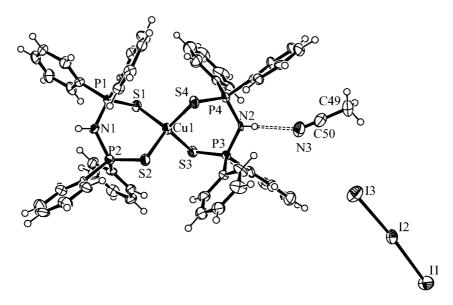


Figure 2. ORTEP plot of compound $[Cu(HL)_2]I_3$ · CH_3CN (2) showing the N(2)–H···N(3) hydrogen bond. Thermal ellipsoids are drawn at 30% probability.

respectively. As a result of metal complexation, some degree of π -electron delocalisation over the [Cu(SP)₂N] ring can be recognised from the slight increase in P–S bond lengths: from 1.937(1)–1.950(1) Å in the free ligand^[9] to 1.959(3)–1.963(3) Å in **2**. Conversely, the P–N bond lengths remain substantially similar to those found in free HL [HL:^[9] 1.672(2)–1.683(2) Å; **2**: 1.666(7)–1.689(6) Å].

Solution and Solid-State ³¹P NMR Spectroscopy

The solid-state ³¹P NMR spectrum of complex **1** shows resonances at $\delta = 32.9$ ($\Delta v \frac{1}{2} = 168$ Hz), 31.4 ($\Delta v \frac{1}{2} = 134$ Hz), 30.4 ($\Delta v \frac{1}{2} = 159$ Hz), 28.9 ($\Delta v \frac{1}{2} = 183$ Hz) and 26.6 ppm ($\Delta v \frac{1}{2} = 213$ Hz), indicative of different crystallographically independent phosphorus atoms in the complex. Conversely, complex **2** shows the presence of a single resonance at $\delta = 52.4$ ppm with a spectral line-width of 410 Hz, suggesting that the phosphorus atoms in the asymmetric unit have a closely similar environment. The variable-temperature ³¹P NMR spectra of **1** in CHCl₃ are shown in Figure 3. The spectrum recorded at 25 °C shows two distinct

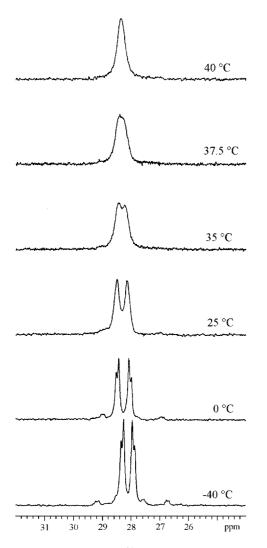


Figure 3. Variable-temperature ^{31}P NMR spectra of complex 1 $(1.0 \times 10^{-2} \text{ M}, \text{CDCl}_3)$.

signals ($\delta = 28.5$ and 28.1 ppm) with an intensity ratio of 1:1, also consistent with the maintenance of the solid structure in solution. (For [Cu^I₄L₃][BF₄] in CD₃CN, a single broad peak at δ = 27.05 ppm has been reported, although no temperature is given).^[2b] As the temperature of the solution is lowered from 25 °C to 0 °C, the 31P NMR spectra reveal two interesting spin-coupled doublets (AB system) with a ${}^{2}J_{PP}$ coupling constant of 11.0 Hz; the spectrum at -40 °C shows that this coupling constant is temperatureinvariant. The appearance of two spin-coupled doublets confirms that both phosphorus resonances are from the same complex molecule rather than from different isomers present in solution, and that the most likely explanation for this observation is the stabilisation of a conformer of the CuS₂P₂N rings. As the temperature of the solution is increased to 37.5 °C, the two well-separated resonances at δ = 28.5 and 28.1 ppm coalesce $(k_{\text{coal}} = 126 \text{ s}^{-1})$, [10] and at 40 °C, the highest temperature reached, the phosphorus atoms become equivalent and the spectrum degenerates to an A₂ system. At this point, a fast exchange process on the NMR timescale makes the four copper atoms equivalent. The dynamic process that averages the phosphorus NMR resonances seems to be non-dissociative, since the reaction of 1 with HL, or with the mixed sulfur/oxygen ligand HN(SPPh₂)(OPPh₂), in the 25–40 °C (CHCl₃) range results in no ligand exchange. Moreover, the conductivity measured in CHCl₃ does not show changes in the range 25-40 °C.

Reactivity of the [Cu₄(L)₃]⁺ Cluster

Several studies have demonstrated that Cu activation of Ace1 and Mac1 involves formation of a tetracopper cluster within the Cu-regulatory domain. EXAFS data for CuAce1 and CuMac1^[6b] suggests the presence of a distorted tetranuclear copper cluster; the Cu^I ions are trigonally coordinated with Cu-S distances of about 2.25 Å and a Cu-Cu distance of 2.7 and 2.9 Å when two different Cu···Cu interactions were considered (Table 3). In this context, the Cu₄S₆ core in the cation [Cu₄(L)₃]⁺ might represent a useful model compound for the metal centres in CuAcel and CuMacl, since the mean Cu-S and Cu-Cu bond lengths (Table 3) compare well with those reported for these clusters. Moreover, unlike the copper thiolate model compound^[11] [Cu₄(SPh)₆]²⁻, in which the Cu^I ions are chemically equivalent, the cation $[Cu_4(L)_3]^+$ contains two chemically different sets of Cu¹ ions [Cu(1)/Cu(2)/Cu(3) and Cu(4), respectively] that might structurally better represent the distorted tetracopper cluster within the Cu-regulatory domain. Although the two ionic complexes $[Cu_4(L)_3]^+$ and $[Cu_4(SPh)_6]^{2-}$ feature the same Cu₄S₆ core type, a significant difference in the "volume" of the Cu4 cages is calculated from the mean Cu···Cu bond lengths (Table 3). Interestingly, the Cu₄ volume in the CuAcel and CuMacl transcriptions factors proves to be intermediate between those found in the ionic model compounds. The possibility of the Cu₄ cluster expanding or contracting as a result of the nature of the

203

FULL PAPER F. Isaia et al.

ligands forming the Cu_4S_6 cores and of the charge transferred by the ligands upon it seems to be a peculiar characteristic of this species.

Table 3. Mean Cu–Cu and Cu–S bond lengths in selected copper complexes with a Cu_4S_6 core, and Cu_4 cluster volume.

Sample	Interaction	$N^{[a]}$	Interatomic distances [Å]	Cu ₄ volume ^[b] [Å ³]
CuAce1 ^[c]	Cu····Cu	2	2.704(2)	2.50
	Cu····Cu	1	2.902(6)	
	Cu-S	3	2.251(1)	
CuMac1 ^[c]	Cu····Cu	2	2.705(4)	2.50
	Cu····Cu	1	2.891(9)	
	Cu-S	3	2.251(2)	
1 ^[d]	Cu···· Cu ^[e]		2.8118(8)	2.60
	Cu···· Cu ^[f]		2.7868(8)	
	$Cu-S^{[g]}$	3	2.2751(1)	
$(Ph_4P)_2[Cu_4(SPh)_6]^{[h]}$	Cu···· Cu ^[i]	3	2.744(4)	2.43
	$Cu-S^{[j]}$	3	2.261(6)	

[a] Number of Cu–Cu and Cu–S interactions of specified distance for each copper atom. [b] Calculated as geometrical volume of the Cu₄ tetrahedron. [c] Interatomic distances from EXAFS data analysis, ref.^[6b] [d] This work. [e] Interatomic distance calculated as the mean of the Cu(1)–Cu(2), Cu(1)–Cu(3) and Cu(2)–Cu(3) bond lengths. [f] Interatomic distance calculated as the mean of the Cu(1)–Cu(4), Cu(2)–Cu(4) and Cu(3)–Cu(4) bond lengths. [g] Value calculated as the mean of all Cu–S bond lengths. [h] Data from ref.^[11] [i] Value calculated as the mean value of all Cu–Cu bond lengths. [j] Value calculated as the mean value of all Cu–S bond lengths.

Dance et al.^[5,6c] have reported on the stability of Cu^I tetracopper Cu₄S₆ clusters with small thiolate ligands and have shown that the clusters are held together by bridging thiolates and that the Cu···Cu bonding is a minor energetic factor in the stability of the clusters. In this regard, since both ligands L and HL can act as chelating agents towards a copper(I) ion, although a substantial difference in nucleophilicity is to be taken into account,^[12] we thought of verifying the ability of the Cu₄ core to remain stable even if coordinated by a set of neutral HL ligands.

The treatment of 1 with the acid HI (55 wt.-% in water) in a mixture of MeCN and CDCl₃ (1:10 v:v) at 25 °C until a 1:2.8 molar ratio was reached resulted in a considerable change in the 31P NMR spectrum of the complex (Figure 4a–d): the two distinct signals of 1 at $\delta = 28.5$ and 28.1 ppm are lower in intensity, while a new signal at lowfield (δ = 52.9 ppm) increases with the amount of HI. The latter value is strongly indicative of the formation of a new complex with all the ligands in their N-protonated form; interestingly, no other resonances due to copper complexes bearing L and HL ligands at the same time were detected for any molar ratio of the reagents used. Values for the $\delta(PS)$ in the 60–50 ppm range have, in fact, been observed previously in the neutral complexes $[Pd(HL)I_2]^{[13]}$ $[\delta(PS) =$ 56.5 ppm (MeCN/CHCl₃, 1:1 v:v) and [Hg(HL)I₂]^[14] [δ (*P*S) = 57.8 ppm, CH₂Cl₂]. To rule out that ligand protonation has caused the dismantling of the Cu₄ core, we also verified that the protonation reaction is reversible. The reaction of the acidic mixture with a strong base like 1,8-bis(dimethylamino)naphthalene (DMAN) causes the deprotonation of the coordinated ligands and the regeneration of the cation

 $[Cu_4(L)_3]^+$, as shown by the ³¹P NMR peaks at $\delta = 28.5$ and 28.1 ppm. (Figure 4, e and f). The overall reactions involving the protonation/deprotonation of the ligands in the cationic complexes $[Cu_4(L)_3]^+$ and $[Cu_4(HL)_3]^{4+}$ are summarised in Scheme 2.

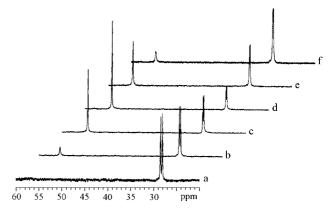
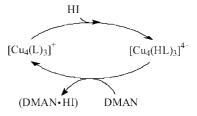



Figure 4. ³¹P NMR spectra of (a) **1** (3.4×10⁻³ M); (b), (c), and (d) solution of **1** after the addition of HI to realise **1/HI** molar ratios of 1:1, 1:2 and 1:2.8, respectively; (e) the solution of (d) after addition of DMAN (**1/HI/DMAN** = 1:2.8:0.65); (f) the solution from (e) after addition of more DMAN (**1/HI/DMAN**, 1:2.8:1.3), all in MeCN/CDCl₃ (1:10 v:v) at 25 °C.

Scheme 2.

Although we were not able to isolate any solid compound from the reaction of 1 with HI, the reported results point to the ability of the Cu_4 cluster to be stabilised by neutral and anionic ligands.

Conclusions

The reaction of the adduct $HL \cdot I_2$ with copper(0) powder under mild conditions affords complexes [Cu^I₄(L)₃]I₃ (1) and [Cu^I(HL)₂]I₃·CH₃CN (2). The latter compound represents a rare example of a structurally characterised complex of HL. To the best of our knowledge, only two other complexes are known in the literature, namely [Hg(HL)I₂]^[14] and [Ag(HL)₂BF₄]^[2b]. The copper(I) ion is coordinated by two neutral HL ligands in an S,S'-isobidentate chelating fashion to give a CuS₄ core. Compound 1 features a distorted tetrahedral Cu₄ cluster encapsulated by three bidentate anionic L ligands where only three of the four copper atoms of the Cu₄S₆ core are chemically equivalent. ³¹P NMR variable-temperature measurements have confirmed that the solid structure is retained in solution and highlight a fast exchange process that makes all coppers equivalent $(T_{\text{coal}} = 37.5 \,^{\circ}\text{C})$. Interestingly, the Cu₄S₆ core in the cation [Cu^I₄(L)₃]⁺ might be considered as a new structural model

www.eurjic.org

compound for the distorted tetranuclear copper(I) cluster within the Cu-regulatory domain in proteins Ace1 and Mac1. Moreover, it constitutes a valid alternative to the higher symmetric Cu₄S₆ core found in the anionic copper thiolate compound [Cu₄(SPh)₆]²⁻. A comparison of the "volume" of the Cu₄ cluster in 1 and in the anion [Cu₄-(SPh)₆|²⁻ reveals a significant difference that can be related to the different set and charge of the ligands complexing the Cu₄ unit. The stability of the Cu₄S₆ core in the species [Cu₄(HL)₃]⁴⁺, obtained from the reaction of 1 with HI, was also established by ³¹P NMR measurements. The expansion/contraction of the Cu₄ cluster may be important as regards the activation of Acel and Macl transcription factors. The electronic charge-modulation by cysteinyl residues at the metal sites in the proteins might reasonably act as a regulating device in building up, modifying or dismantling the Cu₄ cluster structural unit. [6b,15]

Experimental Section

Materials and Instrumentation: Reagents were used as purchased from Aldrich. Diethyl ether was distilled from over LiAlH₄ shortly before use. Hydroiodic acid: ACS reagent, 55 wt.-% in water. $^{31}P\{^{1}H\}$ NMR spectra were recorded with a Varian Unity Inova 400 spectrometer operating at 161.9 MHz. The ^{31}P chemical shifts are referenced to an external standard of H₃PO₄ 85% peak (δ = 0.0 ppm). Variable-temperature ^{31}P NMR spectroscopic data for compound 1 were collected for a 1.0×10^{-2} M solution in CHCl₃. ^{31}P MAS NMR spectra were calibrated indirectly through the H₃PO₄ 85% peak (δ = 0.0 ppm). IR spectra were measured as KBr (4000–400 cm⁻¹) or polyethylene pellets (400–50 cm⁻¹) on a Bruker IFS 55 FT-IR spectrometer. FT-Raman spectra were measured as solid samples on a Bruker IFS 100 spectrometer. Conductometric measurements on compound 1 (1.0 × 10⁻³ M in CHCl₃) were carried out at 20, 30 and 40 °C.

Synthesis: Compound HL was prepared according to ref.^[16] The adduct $HL \cdot I_2$ was prepared in situ in freshly distilled Et_2O from equimolar amounts of HL and I_2 .

 $[Cu_4(L)_3]I_3$ (1): A mixture of HL (0.100 g, 0.222 mmol) and I_2 (0.0565 g, 0.223 mmol) in Et₂O (100 mL) was stirred at room temperature until complete dissolution of the reagents. Copper powder (submicron; 0.0141 g, 0.226 mmol) was then added while stirring and the mixture was allowed to react at room temperature for about 2 days. The resulting air-stable orange solid (149 mg) was isolated by suction filtration, then treated with 10 mL of CHCl₃ for 1 h. The mixture was filtered, and the resulting solution evaporated to dryness to give 0.100 g of 1 $(5.05 \times 10^{-2} \text{ mmol})$; yield 89%, based on metal). $C_{72}H_{60}Cu_4I_3N_3P_6S_6$ (1980.3): calcd. C 43.67, H 3.05, N 2.12, S 9.71; found C 44.0, H 3.1, N 2.0, S 9.6. FT-IR (KBr): $\tilde{v} = 3435 \text{ cm}^{-1} \text{ br. m}, 3118 \text{ br. m}, 3054 \text{ m}, 1587 \text{ w}, 1572 \text{ w},$ 1479 s, 1436 w, 1288 ms, 1106 vs, 1026 w, 998 w, 900 s, 788 s, 735 vs, 721 ms, 687 s, 636 m, 613 ms, 551 vs, 528 ms, 495 m, 413 w. FT-Raman (500–50 cm⁻¹): $\tilde{v} = 114 \text{ cm}^{-1}$. ³¹P NMR (CHCl₃, 25 °C): δ = 28.5 and 28.1 ppm.

[Cu(HL)₂]I₃·MeCN (2): A mixture of HL (0.100 g, 0.222 mmol) and I_2 (0.0565 g, 0.223 mmol) in Et_2O (100 mL) was stirred at room temperature until complete dissolution of the reagents. Copper powder (submicron; 0.0141 g, 0.226 mmol) was then added while stirring and the mixture was allowed to react at room temperature for about 2 days. The resulting air-stable orange solid was isolated

by suction filtration, then treated with 10 mL of CHCl₃ for 1 h. The mixture was filtered, the separated solid compound washed with CHCl₃ and then dissolved in CH₃CN (5 mL); slow evaporation of the solution afforded orange crystals of **2** (0.030 g, 2.08×10^{-2} mmol; yield 10%, based on metal). C₅₀H₄₅CuI₃N₃P₄S₄ (1348.3): calcd. C 43.38, H 3.28, N 3.04, S 9.26; found C 43.5, H 3.2, N 3.1, S 9.0. FT-IR (KBr): \tilde{v} = 3435 cm⁻¹ br. vs, 3052 w, 1477 m, 1435 vs, 1385 m, 1205 vs, 1177 s, 1106 vs, 1026 w, 998 w, 913 w, 874 w, 743 m, 721 m, 693 vs, 550 vs, 531 m, 493 m, 414 w. FT-Raman (500–50 cm⁻¹): \tilde{v} = 135 cm⁻¹ (2.8), 112 (10), 79br (1.6) (relative intensities in parentheses, highest value: 10). ³¹P NMR (MeCN): δ = 52.9 ppm.

X-ray Crystallography: Crystal data and details of the refinement for compounds **1** and **2** are reported in Table 4. Diffraction data were collected on a Bruker SMART CCD diffractometer at room temperature for compound **1** and at 120(2) K on a Bruker–Nonius area-detector diffractometer for compound **2**, using graphite-monochromated Mo- K_a radiation ($\lambda = 0.71073$ Å). Cell parameters and orientation matrix were obtained from least-squares refinement of reflections measured in the range 2.23 < θ < 22.41° for **1** and 2.91 < θ < 27.48° for **2**. An absorption correction was applied using the SADABS routine^[17] for **1** and the SORTAV algorithm^[18] for **2**. The structures were solved by direct methods and refined on F^2 by using the SHELX^[19] program implemented in the WinGX suite.^[20] Anisotropic displacement parameters were assigned to all non-hydrogen atoms. Hydrogen atoms were included in the structure using the riding model.

Table 4. Crystal data and details of refinements for complexes 1 and 2

Compound	1	2
Chemical formula	C ₇₂ H ₆₀ Cu ₄ I ₃ N ₃ P ₆ S ₆	C ₅₀ H ₄₅ CuI ₃ N ₃ P ₄ S ₄
Mol. wt.	1980.27	1348.25
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c$	$P2_1/c$
a [Å]	14.139(1)	16.9869(5)
b [Å]	16.847(1)	17.0247(6)
c [Å]	32.955(2)	20.6025(7)
β[°]	98.24(1)	112.858(2)
$V[\mathring{A}^3]$	7768.8(9)	5490.3(3)
Z^{-}	4	4
$\rho_{\rm calcd} [{\rm Mg m^{-3}}]$	1.693	1.675
$\mu(\text{Mo-}K_{\alpha}) \text{ [mm}^{-1}]$	2.599	2.390
Transmission factors	0.714-1.000	0.9538-0.6730
Collected reflections	70186	65960
Unique refl. with $I > 2\sigma(I)$	10022	12392
Final R and wR_2 indices	0.0493-0.1291	0.0850 - 0.1054
Max. and min. final $\Delta \rho$	-1.244, 1.555	-0.802,0.723

CCDC-271849 (for 1) and -271850 (for 2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

M. B. H., S. L. H, and H. R. O. thank the UK EPSRC for support of the crystallographic study.

www.eurjic.org

a) I. Haiduc, Comprehensive Coordination Chemistry II (Ed.: A. B. P. Lever), Elsevier Pergamon, Amsterdam, Oxford, 2004, vol. 1, p. 323–347; b) C. Silvestru, J. E. Drake, Coord. Chem. Rev. 2001, 223, 117–216, and references cited therein.

FULL PAPER F. Isaia et al.

[2] a) C. P. Huber, M. L. Post, O. Siiman, *Acta Crystallogr., Sect. B* 1978, 34, 2629–2632; b) H. Liu, A. G. Bandeira, M. J. Calhorda, M. G. B. Drew, V. Felix, J. Novosad, F. Fabrizi de Biani, P. Zanello, *J. Organomet. Chem.* 2004, 689, 2808–2819.

- [3] R. D. Bereman, F. T. Wang, J. Najdzionek, D. M. Braitsch, J. Am. Chem. Soc. 1976, 98, 7266–7268.
- [4] D. J. Birdsall, A. M. Z. Slawin, J. D. Woollins, *Inorg. Chem.* 1999, 38, 4152–4155.
- [5] In the case of thiolate ligands, the following multimetallic cuprous thiolate species have been characterised: Cu₃S₃, Cu₄S₄, Cu₄S₆, Cu₅S₆, Cu₅S₇, Cu₆S₈, Cu₈S₈, Cu₈S₁₂ and Cu₁₂S₁₂: I. G. Dance, *Polyhedron* 1986, 5, 1037–1104, and references cited therein.
- [6] Both Acel and Macl bind four Cu^I ions in their Cu-regulatory domains; at high copper concentrations, copper-loaded Acel binds to DNA and activates expression of copper metall-othioneins that protect the cell from copper toxicity. In contrast, Cu^I binding to Macl inhibits its function as a transcriptional activator. a) R. L. Lieberman, A. C. Rosenzweig, Comprehensive Coordination Chemistry II (Ed.: A. B. P. Lever), Elsevier Pergamon, Amsterdam, Oxford, 2004, vol. 8, p. 195–211; b) K. R. Brown, G. L. Keller, I. J. Pickering, H. H. Harris, G. N. George, D. R. Winge, Biochemistry 2002, 41, 6469–6476; c) I. J. Pickering, G. N. George, C. T. Dameron, B. Kurz, D. R. Winge, I. G. Dance, J. Am. Chem. Soc. 1993, 115, 9498–9505.
- [7] G. L. Abbati, M. C. Aragoni, M. Arca, M. B. Carrea, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, M. Marcelli, C. Silvestru, G. Verani, *Eur. J. Inorg. Chem.* 2005, 589–596, and references cited therein.
- [8] D. Cupertino, R. Keyte, A. M. Z. Slawin, D. J. Williams, J. D. Woollins, *Inorg. Chem.* 1996, 35, 2695–2697.

- [9] S. Husebye, K. Maartmaan-Moe, Acta Chem. Scand. Ser. A 1983, 37, 439–441.
- [10] H. Günther, *NMR Spectroscopy*, John Wiley & Sons, 1995, 2nd ed., chapter 9, p. 335–389..
- [11] M. Baumgartner, W. Bensch, P. Hug, E. Dubler, *Inorg. Chim. Acta* 1987, 126, 139–147.
- [12] The calculated NBO charges on the sulfur donor atoms of the model compounds HN(SPH₂)₂ and [N(SPH₂)₂]⁻ are -0.486 and -0.707 e, respectively: G. L. Abbati, M. C. Aragoni, M. Arca, F. A. Devillanova, A. C. Fabretti, A. Garau, F. Isaia, V. Lippolis, G. Verani, *Dalton Trans.* 2003, 1515-1519.
- [13] G. L. Abbati, M. C. Aragoni, M. Arca, F. A. Devillanova, A. C. Fabretti, A. Garau, F. Isaia, V. Lippolis, G. Verani, J. Chem. Soc., Dalton Trans. 2001, 1105–1110.
- [14] M. C. Aragoni, M. Arca, F. Demartin, M. B. Carrea, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, G. Verani, Eur. J. Inorg. Chem. 2004, 4660–4668.
- [15] M. Good, R. Hollenstein, M. Vasak, Eur. J. Biochem. 2001, 197, 655–659.
- [16] A. Schmidpeter, R. H. Bohm, H. Groenger, Angew. Chem. 1964, 76, 870–871.
- [17] G. M. Sheldrick, SADABS, Area-Detector Absorption Correction Program, Bruker AXS, Inc., Madison, WI, USA, 2000.
- [18] a) SORTAV: R. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33–37; b) R. H. Blessing, J. Appl. Crystallogr. 1997, 30, 421– 426.
- [19] G. M. Sheldrick, SHELX-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [20] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837–838.

Received: July 19, 2005 Published Online: November 22, 2005